🌐 請選取語言
主要語言
🇺🇸 English (英語)
🇨🇳 中文 (简体)
🇪🇸 Español (西班牙語)
🇫🇷 Français (法語)
🇩🇪 Deutsch (德語)
🇯🇵 日本語 (日語)
🇰🇷 한국어 (韓語)
🇷🇺 Русский (俄語)
🇸🇦 العربية (阿拉伯語)
🇵🇹 Português (葡萄牙語)
🇮🇳 हिन्दी (印地語)
亞洲語文
🇹🇭 ไทย (泰語)
🇻🇳 Tiếng Việt (越南語)
🇮🇩 Bahasa Indonesia (印尼語)
🇲🇾 Bahasa Melayu (馬來語)
🇲🇲 မြန်မာ (緬甸語)
歐洲語文
🇮🇹 Italiano (義大利語)
🇳🇱 Nederlands (荷蘭語)
🇸🇪 Svenska (瑞典語)
🇳🇴 Norsk (挪威語)
🇫🇮 Suomi (芬蘭語)
🇵🇱 Polski (波蘭語)
🇨🇿 Čeština (捷克語)
🇭🇺 Magyar (匈牙利語)
🇬🇷 Ελληνικά (希臘語)
🇷🇴 Română (羅馬尼亞語)
非洲語文
🇹🇿 Kiswahili (斯瓦希里語)
🇳🇬 Hausa (豪薩語)
🇿🇦 isiZulu (祖魯語)
🇸🇳 Wolof (沃洛夫語)
🇲🇱 Bambara (班巴拉語)
🇨🇮 Dioula (迪烏拉語)
🇳🇬 Igbo (伊博語)
🇰🇪 Dholuo (盧奧語)
🇬🇭 Eʋegbe (伊維語)
🇿🇦 isiXhosa (科薩語)

AI Inspection of Metal Surface Defects

[Quality control and obscure defects] There are many types of defects that may appear differently each time on the stamped parts, in particular oil or water stains, which are not easily detected. Brightness levels during image acquisition can also vary, which makes implementing traditional inspection systems challenging. [AI enabled defect detection with Solvision] Using Solvision’s Segmentation tool, an AI model can be trained using images of different defects in varying brightness to develop an inspection system that can easily detect defects on stamped metal parts, and improve the surface quality before further processing.